Solution to Assignment 8

Supplementary Problems

We assume $\varepsilon \in (0,1)$.

1. Find the pointwise limit of $\{(\cos \pi x)^{2n}\}, x \in (-\infty, \infty)$, and prove its uniform convergence on [a, b] if [a, b] $\cap \mathbb{Z}$ is empty.

Solution. The pointwise limit is $g(x) = 0$ for non-integer x and $g(x) = 1$ for $x \in \mathbb{Z}$. On any interval [a, b] contained in $(n, n + 1)$ for some integer n, by the continuity of the cosine function, $|\cos x|$ attains its maximum at some $c \in [a, b]$ so that $|\cos x| \leq |\cos c| < 1$ on $[a, b]$. It follows that

$$
\|(\cos x)^{2n} - 0\| \le c^n \to 0,
$$

independent of x. That is, the convergence is uniform on $[a, b]$.

Note. Indeed, if I is any interval which contains some integer n in its interior or as its endpoints, this sequence is not uniform convergent. For instance, let us take $(N, b]$ for some $b > N, N \in \mathbb{Z}$. As $(\cos \pi x)^{2n} = 1$ at $x = N$,

$$
\|(\cos \pi x)^{2n} - 0\| = \sup_{(N,b]} (\cos \pi x)^{2n} = 1 \neq 0,
$$

and the convergence cannot be uniform.

2. Find the pointwise limit of $\{ \text{Arctan } nx \}$ and show that this sequence of functions is uniformly convergent on $[a,\infty)$ for every positive a but not uniformly convergent on $(0, \infty)$. The function Arctan is the inverse function of the tangent function on $(-\infty, \infty)$ to $(-\pi/2, \pi/2)$.

Solution. The function $\text{Arctan}(x)$ is strictly increasing and satisfies $\lim_{x\to\infty} \text{Arctan}(x)$ $\pi/2$. Its pointwise limit on $(0,\infty)$ is the constant function $\pi/2$. For $a > 0$, $\|\pi/2 - \pi/2\|$ Arctan $nx \parallel = \pi/2$ – Arctan $na \to 0$ as $n \to \infty$. So the convergence is uniform on $[a, \infty)$. However, the convergence is not uniform on $(0, \infty)$. For the supnorm of $||f_n - \pi/2||$ over $(0, \infty)$ is always equal to $\lim_{x\to 0} (\pi/2 - \text{Arctan } nx) = 0$.

3. Let $f_n \rightrightarrows f$ and $g_n \rightrightarrows g$. Prove that $\alpha f_n + \beta g_n \rightrightarrows \alpha f + \beta g$ for $\alpha, \beta \in \mathbb{R}$. By assumption, for $\varepsilon > 0$, there is some n_1, n_2 such that

$$
|f_n(x) - f(x)| < \frac{\varepsilon}{2 + 2|\alpha|}, \quad n \ge n_1, \ x \in E \ ,
$$

and

$$
|g_n(x) - g(x)| < \frac{\varepsilon}{2 + 2|\beta|}, \quad n \ge n_2, x \in E.
$$

Therefore, for $n \geq n_0 \equiv \max\{n_1, n_2\},\$

$$
\begin{array}{rcl}\n|\big(\alpha f_n(x)-\beta g_n(x)\big)-\big(\alpha f(x)-\beta g(x)\big)| &\leq & |\alpha||f_n(x)-f(x)|+|\beta||g_n(x)-g(x)| \\
&< & |\alpha|\frac{\varepsilon}{2+2|\alpha|}+|\beta|\frac{\varepsilon}{2+2|\beta|}<\varepsilon\n\end{array}.
$$

4. Let the two sequences of functions ${f_n}$ and ${g_n}$ uniformly converge to f and g respectively in E.

- (a) Show that their product $\{f_n g_n\}$ converges to fg uniformly on E under the assumption that $||f_n|| \leq M$, $||g_n|| \leq N$ for all $n \geq 1$ for some M, N .
- (b) Let $f_n(x) = x + 1/n \Rightarrow f(x) = x$ on $(-\infty, \infty)$. Show that $\{f_n^2\}$ does not converge uniformly to f^2 . It shows that the assumption in (a) cannot be dropped.

Solution. (a) Note that the uniform convergence assumption and f_n, g_n are bounded imply $||f_n|| \leq M$, $||g_n|| \leq N$ for all $n \geq 1$ for some M, N . For $\varepsilon > 0$, there is some n_1, n_2 such that $|f_n(x) - f(x)| < \varepsilon/(2+2N)$ for $n \geq n_1$ and $|g_n(x) - g(x)| < \varepsilon/(2+2M)$ for all $n \geq n_2$ and $x \in E$. It follows that

$$
|f_n(x)g_n(x) - f(x)g(x)| \le |f_n(x) - f(x)||g_n(x)| + |f(x)||g_n(x) - g(x)|
$$

\n
$$
\le N|f_n(x) - f(x)| + M|g_n(x) - g(x)|
$$

\n
$$
< N\frac{\varepsilon}{2 + 2N} + M \frac{\varepsilon}{2 + 2M} \le \varepsilon , \quad n \ge n_0 \equiv \max\{n_1, n_2\} .
$$

(b) We have

$$
||f_n^2(x) - f^2(x)|| = \left\| \frac{2x}{n} + \frac{1}{n^2} \right\| = \infty ,
$$

so the convergence is pointwise but not uniform.

5. Let $f_n \rightrightarrows f$ on $[a, b]$ and $||f_n|| \leq M$. For every continuous function Φ on $[-M, M]$, show that $\Phi \circ f_n \rightrightarrows \Phi \circ f$ on $[a, b]$.

Solution. By the uniform continuity of Φ over $[-M, M]$, for every $\varepsilon > 0$, there is some δ such that $|\Phi(z_1) - \Phi(z_2)| < \varepsilon$ whenever $|z_1 - z_2| < \delta$ in $[-M, M]$. For this δ, there associates an n_0 such that $|f_n(x) - f(x)| < \delta$ for all $x \in E$ and $n \ge n_0$. Thus,

$$
|\Phi(f_n(x)) - \Phi(f(x))| < \varepsilon \;, \quad \forall n \ge n_0, \ x \in E \; .
$$

That is, $\Phi \circ f_n \rightrightarrows \Phi \circ f$ on E.

- 6. Show that the following sequences are not uniformly convergent:
	- (a) $\{(\cos \pi x)^{2n}\}\$ on $[a, b], a < b$, where $[a, b] \cap \mathbb{Z} \neq \phi$.
	- (b) $\{(x-2)^{1/n}\}\)$ on [2, 5] (c) $\left\{\tan\left(\frac{n\pi x}{1\pi\epsilon}\right)\right\}$ $\left\{\frac{n\pi x}{1+2n}\right\}$ on $(0,1)$.

Solution. (a) The pointwise limit is $f(x) = 0$ for non-integer x and $f(x) = 1$ for integer x. Therefore, once the interval contains an integer, f cannot be continuous. On the other hand, the sequence belongs to $C(\mathbb{R})$ and uniform convergence preserves continuity. Now, as the limit is discontinuous, the convergence cannot be uniform.

(b) This is just like the case $\{x^{1/n}\}\$ we did in class. The pointwise limit is the discontinuous function $q(x) = 1, x \in (2, 5]$ and $q(2) = 0$.

(c) The pointwise limit is $f(x) = \tan(\pi x/2)$ which is unbounded on $(0, 1)$, but each function in this sequence belongs to $B((0, 1))$. Since uniform convergence preserves boundedness, the convergence cannot be uniform.

7. Let $f_n \in C[a, b]$ converge pointwisely to f on [a, b]. Suppose that $f_n \rightrightarrows f$ on (a, b) . Show that $f \in C[a, b]$ and $f_n \rightrightarrows f$ on $[a, b]$.

Solution. Since uniform convergence preserves continuity, $f \in C(a, b)$. For $\varepsilon > 0$, there exists some n_0 such that

$$
|f(x) - f_n(x)| < \frac{\varepsilon}{3}, \quad \forall n \ge n_0, \ x \in (a, b) \ .
$$

There is another n_1 such that $|f(a) - f_n(a)| < \varepsilon/3$ for all $n \geq n_1$. It follows that

$$
|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)|
$$

$$
< \frac{\varepsilon}{3} + |f_n(x) - f_n(a)| + \frac{\varepsilon}{3}, \quad \forall x \in (a, b), \ n \ge n_2 \equiv \max\{n_0, n_1\}.
$$

Taking $n = n_2$, since f_{n_2} is continuous at a, there is some $\delta > 0$ such that $|f_{n_2}(x) - f_{n_2}(a)| <$ $\varepsilon/3$ for $|x-a| < \delta$. Therefore, for $x \in (a, a + \delta)$, we have

$$
|f(x) - f(a)| \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon ,
$$

hence f is continuous at a . Similarly, it is continuous at b .

8. Let $\{x_k\}$ be an enumeration of all rational numbers in [0,1]. Define $h_n(x)$ to be 1 at $x = x_1, \ldots, x_n$ and to be zero otherwise. Using this sequence to show that pointwise limit of integrable functions may not be integrable.

Solution. The pointwise limit is the function $h(x) = 1$ if x is a rational number and $h(x) = 0$ if it is irrational. This function is not Riemann integrable.